摘要速递|IJIDF 第14卷 第3期
发布日期:2023-12-08来源:浏览次数:0次【字号 大 中 小】
Statistical modelling of digital elevation models for GNSS-based navigation
Hiba Al-Assaad, Christophe Boucher, Ali Daher, Ahmad Shahin & Jean-Charles Noyer
Pages: 205-224
To cite this article:
Hiba Al-Assaad, Christophe Boucher, Ali Daher, Ahmad Shahin & Jean-Charles Noyer (2023) Statistical modelling of digital elevation models for GNSS-based navigation, International Journal of Image and Data Fusion, 14:3, 205-224, DOI: 10.1080/19479832.2023.2218376.
Synergistic retrievals of leaf area index and soil moisture from Sentinel-1 and Sentinel-2
T. Quaife, E. M. Pinnington, P. Marzahn, T. Kaminski, M. Vossbeck, J. Timmermans, C. Isola, B. Rommen & A. Loew
Pages: 225-242
To cite this article:
T. Quaife, E. M. Pinnington, P. Marzahn, T. Kaminski, M. Vossbeck, J. Timmermans, C. Isola, B. Rommen& A. Loew (2023) Synergistic retrievals of leaf area index and soil moisture from Sentinel-1 and Sentinel-2, International Journal of Image and Data Fusion, 14:3, 225-242, DOI: 10.1080/19479832.2022.2149629.
Assessment of micro-vibrations effect on the quality of remote sensing satellites images
Mohamed A. Ali, Fawzy Eltohamy, Adel Abd-Elrazek & Mohamed E. Hanafy
Pages: 243-260
To cite this article:
Mohamed A. Ali, FawzyEltohamy, Adel Abd-Elrazek& Mohamed E. Hanafy (2023) Assessment of micro-vibrations effect on the quality of remote sensing satellites images, International Journal of Image and Data Fusion, 14:3, 243-260, DOI: 10.1080/19479832.2023.2167874.
Research on adaptive enhancement of robot vision image based on multi-scale filter
Qin Dong
Pages: 261-277
To cite this article:
Qin Dong (2023) Research on adaptive enhancement of robot vision image based on multi-scale filter, International Journal of Image and Data Fusion, 14:3, 261-277, DOI: 10.1080/19479832.2022.2149630.
对比度增强和直方图均衡是两种图像增强方法,它们可能导致生成图像的边缘位置发生变化、模糊甚至丢失细节。因此,本文引入一种多尺度滤波器,对机器人视觉图像进行自适应增强,提高机器人视觉图像的亮度,丰富图像细节,减少图像增强时间。根据Retinex理论,获取机器人视觉图像的特征信息,得到Retinex算法的对数域运算形式,确定高频部分的机器人视觉反射图像,通过多尺度滤波估计机器人照明视觉图像,得到高斯滤波的尺度常数;根据Retinex加权引导滤波算法,设计了机器人视觉图像增强过程。实验结果表明,该方法增强的机器人视觉图像平均值为88.63,标准差为62.78,信息熵为8.18,机器人视觉图像增强时间仅为5.9s,机器人视觉图像的PSNR高达39.92,证明了该方法对机器人视觉图像增强效果良好。
Whale- crow search optimisation enabled deep convolutional neural network for flood detection
Madhuri Balasaheb Mulik, Jayashree V. & Pandurangarao N. Kulkarni
Pages: 278-298
To cite this article:
Madhuri BalasahebMulik, Jayashree V. &Pandurangarao N. Kulkarni (2023) Whale- crow search optimisation enabled deep convolutional neural network for flood detection, International Journal of Image and Data Fusion, 14:3, 278-298, DOI: 10.1080/19479832.2023.2186957.
卫星影像在洪水探测领域更具吸引力。对于紧急情况下的决策支持,洪水检测起着至关重要的作用,但如何更有效地利用卫星影像进行洪水地区检测成为当前技术障碍之一。本文在深度卷积神经网络(W-CSA DCNN)方法的基础上,创新了一种名为Whale- crow搜索算法的模型用于洪水检测。该模型主要包含预处理、分类、分割和特征提取四个步骤。为了从输入影像中获取相关信息,首先将卫星影像进行预处理,然后根据植被指数获取特征,将预处理后的影像进行特征提取过程。通过Kernel Fuzzy Auto regressive(KFAR)模型,将获取特征用于分割过程中,然后将分割图像用于分类,该分类通过 DCNN 进行,并通过 W-CSA 进行验证,W-CSA 是Crow Search Algorithm (CSA)和Whale optimisationalgorithm (WOA)的组合。特异性、准确性和灵敏度分别为0.982、0.972和0.975,该方法比现有方法具有更高的性能。
期刊主页:http://www.tandfonline.com/tidf
投稿网址:http://mc.manuscriptcentral.com/tidf
(文/ 谢文寒、孙晓霞)